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• How can knowledge in computer science and physics help in solving major challenges 
related to urban sustainability?

• How can machine learning be used to predict outdoor conditions in an urban area in 
combination with physics?

• How can the reliability of urban building energy models be improved using machine learning?

• How can climate risk be assessed using machine learning?

Questions to be discussed
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Computer science and physics to study
urban sustainability
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Film by Yann Arthus Bertrand (2009)
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Building energy simulator

Middleware
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1
Ellis et al. (2008)

Define building geometry using
a graphical interface 

2 Define building parameters and weather data

3 Run simulation

DOE
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Ali-Toudert and Bottcher (2018)

Energy and mass balance (or RC model)
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???
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Heat and mass transfer

Fluid dynamics

Meteorological experiments
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Heat Vapour
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Bureau of Street Services LA

Vertical green systems
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Yoshida et al. (2016)

Perez et al. (2014)
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Machine learning to predict outdoor conditions
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White box

Yap (2021)

Computational fluid dynamics

Black box

Statistical models

LR SVM

RF ANN

Grey box

Energy and mass balance (or RC model)

Oke et al. (2017)
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Energy and mass balance

Computational fluid dynamics

Low fidelity

High computational cost
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Weather stations Thermal images

Building energy simulations Weather simulations

Energy and mass balance
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Heat and
water mass
stored by 
the street canyon

Convective heat and
mass transfer 
between surfaces and 
the air volume

Sensible and latent 
heat releases by 
buildings and traffic

ሶ𝒙 = 𝑨 ⋅ 𝒙 + 𝑩 ⋅ 𝒖
𝒚 = 𝑪 ⋅ 𝒙 + 𝑫 ⋅ 𝒖

Linear state space

Discrete linear state space
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ሶ𝒙𝑛+1 = 𝑨𝒅 ⋅ 𝒙𝑛 + 𝑩𝒅 ⋅ 𝒖𝑛

𝒚𝑛+1 = 𝑪𝑑 ⋅ 𝒙𝑛 + 𝑫𝒅 ⋅ 𝒖𝑛

Discrete linear state space Input vector

Wall and window surface temperature
Sensible and latent waste heat releases

Atmospheric
conditions

Land surface
temperature

min
ℎ1…ℎ𝑀

𝑑(ෝ𝒚𝑛, 𝒚𝑛)

Genetic
Algorithm 

Measurements

𝑨𝑑, 𝑩𝑑, 𝑪𝑑, 𝑫𝑑 
Climate model

Thermal images

Building models
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Input

Input

Zhang et al. (2018)

Weather
file

Output

Output
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(𝐸
)

𝑡 = 𝑡0

Wall and window surface temperature
Sensible and latent waste heat releases

Simulation

Training

Outdoor conditions

𝑡 = 𝑡1

Repeat until
𝑑 𝐸𝑛+1, 𝐸𝑛 < 𝜏

23



3

4
Measurements

Estimates Energy and mass  balance
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Waste heat

TrafficGreenery

Cool pavement
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Machine learning to calibrate an urban building 
energy model
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Building energy model

What parameters significantly
affect the energy consumption?
(sensitivity analysis)
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Sensitivity analysis

Sampling generation

Surrogate modelling

Optimization

Why are interactions between buildings and 
their outdoor conditions being ignored in
most urban building energy models?

Chen et al. (2020)

Urban building energy model
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LR SVM

RF ANN

Black box models
Calibrated

Optimizer

GA

Coupled
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Sampling generation

Surrogate modelling

Optimization

Sensitivity analysis Uncoupled

versus

Coupled

Goodness-of-fit

(Lafond, 2018)

Total heating/cooling load
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Sensitivity analysis

Sampling generation

Surrogate modelling

Optimization

𝜽 Description 𝜽𝑙 𝜽𝑢

𝜃1 Occupancy 

(in people)

1.21 × 102 3.03 × 103

𝜃2 Light intensity 

(in W)

1.21 × 104 1.21 × 105

𝜃3 Equipment intensity 

(in W)

1.82 × 104 1.82 × 105

𝜃4 Infiltration 

(in m3/s)

0.01 10.00

𝜃5 Wall thermal resistance 

(in W/m2-K)

0.05 3.00

𝜃6 Wall density

(in kg/m3)

3.00 × 102 1.80 × 103

𝜃7 Wall specific heat capacity

(in J/kg-K)

4.00 × 102 1.50 × 103

𝜃8 Wall thermal emissivity

(0-1)

0.01 0.98

𝜃9 Wall solar absorptivity

(0-1)

0.05 0.90

𝜃10 Window-to-wall ratio

(0-1)

0.01 0.90

𝜃11 Window thermal resistance 

(in W/m2-K)

0.04 1.50

𝜃12 Window solar heat gain

(0-1)

0.20 0.90

INIVE EEIG (2004)

Mean sensitivity
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Sensitivity analysis

Sampling generation

Surrogate modelling

Optimization

Building A Building B Building C
20% 30% 20% 30% 20% 30%

Uncoupled 7.2 17.2 3.9 13.5 4.4 13.0

Coupled 3.5 9.6 3.7 9.6 3.0 8.6

𝜽

Building A Building B Building C

coeff. 𝒕 coeff. 𝒕 coeff. 𝒕

𝜃1 0.0141 27.1 0.0156 35.4 0.0140 28.8

𝜃2 0.0001 10.0 0.0001 11.1 0.0001 8.9

𝜃3 0.0001 14.7 0.0002 21.3 0.0002 18.4

𝜃4 4.1065 27.0 4.7787 37.6 4.2432 29.8

𝜃5 -1.6943 -3.4 -1.2795 -2.9 0.0304 0.1

𝜃6 -0.0012 -1.1 -0.0007 -0.7 -0.0006 -0.6

𝜃7 -0.0052 -3.6 -0.0020 -1.7 -0.0011 -0.8

𝜃8 -3.9092 -2.8 -2.3606 -1.7 -0.9580 -0.6

𝜃9 3.6317 2.0 11.7867 7.8 14.0499 8.0

𝜃10 41.6530 24.5 28.1425 20.1 24.8345 16.3

𝜃11 2.7882 2.7 2.4681 -2.9 3.7907 3.7

𝜃12 33.4358 15.7 22.3531 12.6 20.9123 10.2

𝐶 20.8267 17.4 21.8236 21.8 18.2139 16.3
D
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ty

CV(RMSE) (in %)

CV(RMSE) (in %)

D
en

si
ty
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Sampling generation

Surrogate modelling

Optimization

Sensitivity analysis
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Sampling generation

Surrogate modelling

Optimization

Sensitivity analysis
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Machine learning to assess climate risk
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White box

Detailed building energy model

Black box

Statistical models

LR SVM

RF ANN

Grey box

Bueno et al. (2012)

Energy and mass  balance (or RC model)
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UCAR
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Zhang et al. (2018)
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(𝐸
)

𝑡 = 𝑡0

Wall and window surface temperature
Sensible and latent waste heat releases

Training

Outdoor conditions

𝑡 = 𝑡1

Repeat until
𝑑 𝐸𝑛+1, 𝐸𝑛 < 𝜏

Training
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Heat Vapour
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Chen et al. (2022)

2030 2040 2050

Socioeconomic factors
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Predict

30 years

Land surface temperature

Predict

???

Predict

???

Atmospheric conditions
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Q&A session
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