Carnegie Mellon University

Thermal comfort

Dr. Miguel Martin

Learning objectives

- 1. Fundamentals of thermal comfort
- 2. Indices of thermal sensation

References

Parsons, K. C. "**Human Thermal Comfort**". Boca Raton, FL: CRC Press/Taylor & Francis Group, (2020).

What are the fundamental notions of thermal comfort?

Thermal comfort

How hot or cold we feel in an indoor or outdoor space

Room temperature

Metabolic heat rate

 $A_{skin} \cdot q_{met} = Q_{prod} + W_{act}$ Total energy produced by human body

Carnegie Mellon University

Heat balance for human body

$$\Delta Q_{stored} = Q_{prod} - Q_{loss}$$

What if $\Delta Q_{stored} > 0$?

What if $\Delta Q_{stored} < 0$?

What if $\Delta Q_{stored} = 0$?

Sensible heat loss through skin

Indoor or outdoor environment

Carnegie Mellon

University

Net heat transfer by radiation

$$H_{rad} = \sigma \varepsilon_1 A_1 \underbrace{F_{1 \to 2}}_{\text{View factor}} (T_1^4 - T_2^4) = \sigma \varepsilon_2 A_2 \underbrace{F_{2 \to 1}}_{\text{View factor}} (T_2^4 - T_1^4)$$
Properties:

•
$$\sum_{n} F_{i \to n} = 1$$
 (summation)

•
$$F_{i \to (j,r)} = F_{i \to j} + F_{i \to r}$$
 (superposition)

•
$$A_i F_{i \to j} = A_j F_{j \to i}$$
 (reciprocity)

Indoor mean radiant temperature

Actual room

$$T_{mrt} = \sum_{n} F_{body \to n} T_n \Rightarrow H_{rad} = \sigma \varepsilon_{skin} \left(T_{skin}^4 - T_{mrt}^4 \right)$$
Carnegie
Mellon
University

Outdoor mean radiant temperature

Carnegie Mellon University

Latent heat loss through skin

Indoor or outdoor environment

Carnegie Mellon

University

Heat balance for human body

$$Q_{prod} = H_{conv} + H_{rad} + LE_{trans} + H_{res} + LE_{res}$$

What are the indices of thermal comfort?

Thermal sensation index

How hot or cold we feel in an indoor or outdoor space

$$TSI = f(T_{air}, T_{mrt}, \phi_{air}, \dot{V}_{air})$$

Predicted mean vote (PMV)

Carnegie Mellon University

Operative temperature

$$T_{op} = f(T_{air}, T_{mrt}, v_{air})$$

$$T_{op} = \frac{T_{air} + T_{mrt}}{2}$$

$$T_{op} = \frac{h_{conv}T_{air} + h_{rad}T_{mrt}}{h_{conv} + h_{rad}}$$

$$T_{op} = \frac{T_{mrt} + T_{air} \cdot 10\sqrt{v_{air}}}{1 + 10\sqrt{v_{air}}}$$

Carnegie Mellon

University

ASHRAE comfort chart

clo: unit to describe the level of insulation dure to clothing