Carnegie Mellon University

Building Energy Simulations (Part I)

Dr. Miguel Martin

Learning objectives

- 1. Overview of simulation tools in urban climatology and building science
- 2. Creation of a building energy model

Carnegie Mellon

University

2

References

Garg, Vishal, Jyotirmay Mathur, and Aviruch Bhatia. "**Building Energy Simulation : A Workbook Using Designbuilder**". Second edition. Boca Raton, FL ; CRC Press, Taylor & Francis Group, (2021).

What are the simulation tools we can use in urban climatology and building science?

Simulation tools

Building energy simulations

Coupling

How do we create a building energy model?

Creation of a building energy model

What is the procedure?

1. Geometry

2. Material composition

3. Internal heat gains

4. HVAC system

Where do I get the information from?

Architectural plan

Database

TABULA WebTool

Smart metering

Infrared thermography

3D city model

Building management system

Geometry in 3D city models

Carnegie Mellon University

Install OpenStudio Sketchup pluging

→ C @	s github.com/NREL/C	penStudio/v	viki/OpenStudio	SDK-Version-C	ompatibil	ity-Matrix			G & L 0 .
Product ~	Solutions Y Open S	ource ~	Pricing						Q Search or jump to [] Sign in Sign in
RREL / Ope	nStudio Public								🗘 Notifications 🦞 Fork 186 🏠 Star 460 -
⇔ Code ⊙ Is	sues 198 🖺 Pull rei	juests \$	 Actions 	Projects	1 00	Wiki 🛈 Securi	ty 🗠 Insights		
	Open wenyikuang	Studie edited this p	D SDK V age on Nov 22,	Version	Con	npatibilit	y Matrix	ĸ	
D.		E+	Radiance	SketchUp	Ruby	SHA	Released	Gemfile	+ Pages 20
	v3.7.0	23.2.0	5.0.a.12	See	2.7.2	d5269793f1	2023-11-20	Gemfile	Find a page
	v3.6.1	23.1.0	5.0.a.12	See	2.7.2	bb9481519e	2023-05-22	Gemfile	* Home
	v3.6.0	23.1.0	5.0.a.12	See	2.7.2	860f5de185	2023-05-09	Gemfile	Building Additional Language Bindings
	v3.5.1	22.2.0	5.0.a.12	See	2.7.2	22e1db7be5	2022-12-29	Gemfile	t - Clana Format Stude
	v3.5.0	22.2.0	5.0.a.12	See	2.7.2	7b14ce1588	2022-11-10	Gemfile	- Cang romai siye
	v3,4.0	22.1.0	5.0.a.12	See	2.7.2	4bd816f785	2022-05-05	Gemfile	 Configuring OpenStudio Build Enviro
	v3.3.0	9.6.0	5.0.a.12	See	2.7.2	ad235ff36e	2021-11-05	Gemfile	Configuring OpenStudio SDK Build E
	v3.2.1	9.5.0	5.0.a.12	See	2.7.2	bdbdbc9da6	2021-06-25	Gemfile	Cpp Coding Standards
	v3.2.0	9.5.0	5.0.a.12	See	2.7.2	e11f0a08b2	2021-05-04	Gemfile	EnergyPlus Version Change
	v3.1.0	9,4,0	5.0.a.12	See	2.5.5	e165090621	2020-10-16	Gemfile	Information for Third Party Collabora
	v3.0.1	9.3.0	5.0.a.12	See	2.5.5	09b7c8a554	2020-06-26	Gemfile	Issue Prioritization
	v3.0.0	9.3.0	5.0.a.12	See	2.5.5	1c9617fa4e	2020-04-27	Gemfile	OpenStudio Continuous Integration
	v2.9.1	9.2.0	5.0.a.12	2017	2.2.4	3472e8b799	2019-12-07	Gemfile	Departmente NVAC Connections
	v2.9.0	9.2.0	5.0.a.12	2017	2.2.4	801faa459c	2019-10-11	Gemfile	Opensionio nyac connections
	v2.8.1	9.1.0	5.0.a.12	2017	2.2.4	6914d4f590	2019-06-18	Gemfile	OpenStudio Pull Requests
	280	910	5.0.a.12	2017	2.2.4	55665635f0	2019-04-12	Gemfile	OpenStudio SDK Pythan Binding Vers

Tutorial EnergyPlus - Install OpenStudio Sketchup Plugin in Virtual Andrew

https://youtu.be/IEWey-yiv-E

Carnegie Mellon

University

Describe the geometry

Tutorial EnergyPlus Define Building Geometry

https://youtu.be/vNSAXC96bao

Carnegie Mellon University

Define the material composition

	Chg Del Obi	Copy UD											
List		Comments from IDF											
11 Vertine		Contractor											
01 SimulationControl	-												
01) Building													
01] SurfaceConvectionAlgorithm Inside													
01) SurfaceLonvectorvagormm. O utude													
011 Timestep													
01] Site Location													
1) RunPeriod													
 ScheduleTunel into 		Explanation of Object a	and Current Field										
34) Schedule:Compact		Object Description: Re	egular materials describe	ed with full set of th	ernal properties								
02) Schedule Constant		P. I. P											
011 Material MeMarca		ID: A1											
All Material NoMass 2021 Material NaG an		Enter a alphanumeric	value.										
01] WindowMaterial SimpleGlazingSystem		This field is required.											
[7] Construction	~												
đ	Units	061	052	063	054	065	056	057	068	059	0610	0611	
		Metal Roofing	Roof Insulation [25]	Metal Decking	1IN Shacco	SIN Concrete HW	Wall Insulation [42]	1/2IN Gypnum	MAT-CC05 4 HW/C	M11 100mm lightwe	F16 Acoustic Ne	G01a 19mm gaptur	
stress		MediumSmooth	MedunRough	MediumSmooth	Smooth	MedunFlough	MediumRough	Smooth	Rough	MediumRough	MediumSmooth	MedumSmooth	
ckness	m	0.0015	0.263	0.0015	0.0253	0.2033	9.14000000E-02	0.0127	0.1016	0.1016	0.0191	0.019	
ductivity	W/m-K	45.006	0.049	45.006	6.91800000E-01	1.72960000E+00	0.0432	0.16	1.311	0.53	0.06	0.16	
naty	kg/m3	7680	265	7680	1858	2.24300000E+03	91	784.9	2240	1280	368	900	
solic Heat	J/kgK	418.4	8.36800000E+02	418.4	8.37000000E+02	8.37000000E+02	8.37000000E+02	8.3000000E+02	8.36800000E+02	8.4000000E+02	5.9000000E+02	1090	
mal Absorptance		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	
lar Absorptance		0.6	0.7	0.6	0.92	0.65	0.5	0.4	0.85	0.5	0.3	0.4	
ble Absorptance		0.6	0.7	0.6	0.92	0.65	0.5	0.4	0.85	0.5	0.3	0.4	

Tutorial EnergyPlus - Install EnergyPlus and Define Material Composition

https://youtu.be/8AD6-vdijDE

Define internal heat gains

Tutorial EnergyPlus - Define Internal heat Gains

https://youtu.be/QmLrMX5XOd8

Carnegie Mellon

University

Design an ideal HVAC system

File Edit View Jump Window Help	p					- 8				
New Obi Dup Obi Dup Obi	• Chg Del Obi	Copy Obi Paste	054							
us list		annexts from IDE								
007 Conduction		uniners num lor				_				
001] GlobalGeometryRules	^									
003) Space										
003] SpaceLkit										
003] Zone 0011 Zonal ist										
0181 BuildingSurface:Detailed										
003] FenestrationSurface:Detailed										
1001] People 1001] Lights 1001] ElectricEquipment										
		splanation of Object an	nd Current Field							
0011 ZoneInlitution DesignFlowRate	R	Object Description Zone with ideal air surtem that meets heating or cooling loads								
001) HVACTemplate Themostat										
2003 HVACT emplote Zone I dealLoadsAirSystem		ield Description: Zone	name must match a	building zone name						
0001] Dutput VariableDictionary		Generation and advect								
2001] Dutput Lable SummayPreports 20011 Dutput Costual Table Style	1	This field is required.								
1003] Dutext Variable	~									
	100.0	Laura		1000 E						
eld	Units	06(1	06/2	063						
ione Name		ThemaiZone 1	Themal Zone 2	Themal Zone 3 •						
errçfate Thermoulat Name		Themostat "0"	Themostat	Themostat						
ysten Avalability Schedule Name		Always Un	Always Un	Always On						
laximum Heating Supply Air Temperature	c	50	50	50						
inimum Cooling Supply Air Temperature	C	13	13	13						
laximum Heating Supply Air Humidity Ratio	kgWater/kgDty	4 0.0156	0.0156	0.0156						
inimum Cooling Supply Air Humidity Ratio	kgWater/kgDty	4 0.0077	0.0077	0.0077						
eating Limit		NoLimit	NoLimit	NoLimit						
aximum Heating Air Flow Rate	m3/s									
aximum Sensible Heating Capacity	W									
poling Limit		NoLimit	NoLimit	NoLimit						
aximum Cooling Air Flow Rate	m3/s									
aximum Total Cooling Capacity	W									
eating Availability Schedule Name		Always On	Always On	Always On						
ooling Availability Schedule Name		Always On	Always On	Always On						
ehumidification Control Type		ConstantSensibleHe	ConstantSensibleHe	ConstantSensibleHe						
ooling Sensible Heat Ratio	dmensionless	0.7	0.7	0.7						
ehumidification Selpoint	percent	60	60	60						
unidication Control Type		None	None	None						
uniditication Setpont	percent	30	30	30						
Adoor Air Method	- 34	Flow/Person	Plow/Plerson	FlowPerson						
Idoor AI Flow Flate per Person	m3/s	0.00344	0.00944	0.00944						
Idoor Air Now Hate per Zone Noor Area	m3/s-m2									
aboo ve nov nate per Zone	m3/1									
High specie cation outdoor Air object Name		News	Marca	Nees						
Advantation of a Company Trans		NoF concerning	Mal conceiler	NoE conceiner						
undoor war E conomicer 1308		None Conditioner	Not conomizer	Not conomizer						
eal necuvery rype	des envirolana	0.7	0.7	07						
ensue neal neovery Elleoweress	directionless	0.0	0.0	0.7						
Sensible Heat Recovery Effectiveness Latent Heat Recovery Effectiveness	dmensionless dmensionless	0.7 0.65	0.7 0.65	0.7 0.65						

Tutorial EnergyPlus - Define Ideal HVAC system

https://youtu.be/vChO8_leqYU

Carnegie Mellon

University